Trajectory Planning for the Walking Biped "Lucy"
نویسندگان
چکیده
A real-time joint trajectory generation strategy for the dynamic walking biped ”Lucy” [1, 2] is proposed. This trajectory planner generates dynamically stable motion patterns by using a set of objective locomotion parameters as its input, and by tuning and exploiting the natural upper body dynamics. The latter can be determined and manipulated by using the angular momentum equation. Basically, trajectories for hip and swing foot motion are generated, which guarantee that the objective locomotion parameters attain certain prescribed values. Additionally, the hip trajectories are slightly modified such that the upper body motion is steered naturally, meaning that it requires practically no actuation. This has the advantage that the upper body actuation hardly influences the position of the ZMP. The effectiveness of the developed strategy is proven by simulation results.
منابع مشابه
Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملApplication of Cubic Spline Interpolation to Walking Patterns of Biped Robot Aye
This paper presents cubic spline interpolation based trajectory planning method which is aiming to achieve smooth biped robot walking trajectory. We first characterize the bipedal walking cycle and point out some major issues that need to be addressed to plan a continuous swing leg trajectory by using the concept of cubic polynomial and cubic spline interpolation. By applying these interpolatio...
متن کاملOptimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کاملTrajectory planning for smooth transition of a biped robot
interpolation based trajectory planning method which is aiming to achieve smooth biped swing leg trajectory by reducing the instant velocity change which occurs at the time of collision of the biped swing leg with the ground. We first characterize the bipedal walking cycle and point out some major issues that need to be addressed to plan a continuous swing leg trajectory by using the concept of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 25 شماره
صفحات -
تاریخ انتشار 2006